1. Preprocessing

- Data is stored in column-store fashion for cache efficiency.
- Parse the input data in parallel and collect statistics per column, such as
 - minimum element value
 - maximum element value
 - number of tuples
 - number of distinct elements
 - spread of values

2. Query Optimization

- Assumptions
 - All attribute values are uniformly distributed.
 - The values of all attributes are drawn independently.

- Join re-ordering
 - Join tree enumeration using a bottom up dynamic algorithm approach.
 - Consider only left deep binary join trees.
 - Cardinality estimation for both sides of the join predicate with statistical formulas - taking into consideration foreign key relationships between the two columns.
 - Use as cost function the sum of sizes of intermediate results.

3. Query Scheduling

- A global queue is used to distribute the queries into two NUMA regions.
- Sort the queries of a batch in descending order (heavy first) based on the estimations (cost) of the optimizer and push to the queue.
- As soon as a cpu finishes the execution of a query, the next one in the queue is assigned to it immediately.
- Clone the dataset on both NUMA regions for better memory bandwidth utilization.

4. Plan Execution

- Intermediate results are materialized into RAM to evaluate next-level operations.
- Filters are performed first in the tree hierarchy to eliminate as many tuples as possible.
- Each column (suppose from relations A and B) on both sides of the join predicate is represented as a vector of \(<\text{RowId}, \text{Value}>\) pairs. These vectors are then passed as input to the join operator.
- The join operation results in a vector of join predicate pairs \(<\text{RowId}_A, \text{RowId}_B>\), where A and B are the joined relations.
- This result is then transformed into a vector of values that correspond to the row ids of all relations whose join predicates have already been calculated.
- To calculate the final aggregate functions we scan the vector of row ids and probe the initial tables.
- Let’s consider the query \(A.0 = B.0 \& B.1 = C.1\).

5. Join Operator

- Use Parallel Radix Hash Join\(^{*}\) to compute the join result
 - The two input relations \(R\) and \(S\) are divided into partitions.
 - Each thread receives a chunk of data and computes a histogram over the input data, so that the exact output size is known for each thread and each partition.
 - Each thread pre-computes the exclusive location where it writes its output. Finally, all threads perform their partitioning.
 - Each thread takes a set of \(R\) and \(S\) partitions. A separate hash table is created for each \(R\) partition (assuming \(R\) is the smaller relation). Each of these hash tables fit into the CPU cache.
 - During the final probe phase, \(S\) partitions are scanned and the respective hash table is probed for matching tuples.

\(^{*}\)source: ETHZ Systems Group’s work on Parallel & Distributed Joins at https://www.systems.ethz.ch/node/334

6. Caching of indexes

- The Radix-Join algorithm requires a preprocessing phase that divides a relation into partitions (build phase). This phase is the most time consuming in comparison with the other radix hash join phases.
- Every time we apply the build phase to a column of an initial table, we store the result for subsequent use.

Conclusion

- Memory’s bandwidth seems to be the bottleneck for in memory database systems.
- Occam’s Razor: The simplest solution is always the best.